Planning of SanctSound

 

 

Longitude Sound Bytes
Ep 106: Planning of SanctSound (Listen)

 

Jesse Annan van der Meulen
At the intersection of ideas and action, this is Longitude Sound Bytes, where we bring innovative insights from around the world directly to you.

I’m Jesse Annan van der Meulen, Longitude fellow from Rice University.

Welcome to our Longitudes of Imagination series, where we are exploring the roles of individuals, technologies and research that is helping advance understanding in ocean science and space technology!

In this series, we spoke with the members of the SanctSound project that is managed by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Navy. It is a project to better understand underwater sounds within the U.S. national marine sanctuaries.

In today’s episode we are featuring highlights from a conversation I led with Dr. Leila Hatch, research ecologist at NOAA.

As a fellow, I was especially interested to hear about how we are only on the verge of recording and understanding underwater soundscapes, and how much insight this is already bringing us into the world of animals below the sea as well as human impact on this soundscape. We started our conversation with a broader introduction to NOAA and how Dr. Hatch is positioned within this agency.

.

Leila Hatch

I work for the United States National Oceanic and Atmospheric Administration, which is nicknamed NOAA. And in the United States, people tend to- like if I asked my neighbors what NOAA is, they say that’s where you get your National Weather Service data from. So every day when they look up whether it’s going to be cloudy, right, that’s how they think of NOAA. But of course, all the way through to if they live in a place where there’s a big hurricane, they think, who’s going to predict whether the storm is going to hit me, NOAA. And if they work offshore and they’re a fisherman, and they want to know if I go out today, am I going to get absolutely slammed by waves, they look at our oceanographic data and NOAA, right. So there is a- NOAA sits in our Department of Commerce which, once we start talking about all these more environmentally focused things—that is what I do—will start to be kind of questionable. Our National Parks Service is in the Department of the Interior. We do all kinds of protection of animals that are in these wildlife spaces, that’s all over in our Department of the Interior. And so folks think, well, logically all the stuff you do to protect sea animals, that should be over there too. But no, it’s in Department of Commerce. And that’s because it emerged initially from being the place that managed fisheries. And that was a business, right? That is commerce.

Inside NOAA, we have what’s called the wet side and the dry side. The dry side we consider to be all our weather services and satellites, and all of that information I talked about that’s associated with predicting climate, which is huge right now. And predicting and helping people with information about the environment, they need to make decisions. And then the wet side involves managing endangered species that live in the ocean, managing all the fisheries and making sure that those are sustainable. And then I work for the Office of National Marine Sanctuaries, which is the analogous part that protects the places in the country that have been designated as special to protect everything that lives there.

Jesse
It’s a great explanation. How did you become involved in the SanctSound project specifically, and what is your role in it, and also more broadly, in NOAA?

Leila
I have been studying the effects of underwater sound—sound that is produced by people and the things we do offshore, and the effects that has on marine life—through my doctoral work and then on into my career. NOAA does not have responsibilities to reduce noise, just to go out there and control human sources of noise. I work in the parts of the agency that focus on the spaces, the places that are important to animals and marine life. So what I do for NOAA at an agency level, I partner with a few colleagues and we manage what’s called our agency level NOAA ocean noise strategy, which we developed and published in 2006, which is a way of wrapping our arms around the very many authorities we have across fisheries and areas and habitats and species. And collectively we’re seeking to reduce the effects of underwater noise on those species.

We have a very sort of synthetic science plan that underlies that, that is to better understand how animals are using sound to begin with, because the more we understand all of those uses, the better we can get at what it is animals need us to mitigate or reduce that is harmful. And we have a very broad monitoring strategy, which is to push us beyond monitoring this place in this way and then over here in this place, and this way. Some of which is sometimes needed, if you’re gonna build a wind farm right over there, or whatever it is, but broadly at its core, NOAA over decades needed a way of monitoring the way noise actually behaves, which is very large scale. So we produced a science plan that has this array of sensors underwater that are monitoring for a very long time. And we argued at the time that we put together the strategy that really sanctuaries should even have a finer resolution information that goes on. Again, this is long term monitoring that is focused in sanctuaries, and is underscoring how important the sound is to animals from a really wide range of taxonomic groups in these places. So we made that recommendation in 2016. That project was then funded in collaboration with the US Navy and myself, and the US Navy led from then on the sanctuary soundscape monitoring project. And that project is nicknamed SanctSound. It went from 2017 to this past spring, just about a month ago, when we finally pushed those products out.

Jesse
Wow. So just you basically just finished up with the project.

Leila
We did. It was a time-limited project. And our goal now is to definitely not stop, there’s still going to be monitoring going forward and in this national coordinated way.

Jesse
Okay. You have a ton of data to look at, analyze and…

Leila
300 terabytes.

Jesse
Wow, it’s hard to imagine how much that is.

Leila
Yeah, I tried to figure this out. You can fit 50 High Definition movies in one terabyte. So this is 300 terabytes. A very, very large part of this project was figuring that out. It was a really big push to just coordinate a data collection approach. But in terms of innovation, which is data management, how to get all of that data in one place in a way that you could compare it, and it would be there and anyone can download it and all of that.

Jesse
Okay. So you’ve briefly mentioned already that sound pollution is harmful to animals. Could you give a specific example of ways in which sound can harm animals in the sea?

Leila
The project underscored that there are several ways that recording underwater helps you better protect animals. And one of the really big ones is it helps you understand the interaction between humans sources of noise and the sound that animals need. We have several stories that we wrote, first of all little web stories that are all correlated on the portal that get into these different kinds of effects. 

Leila
I’ll give you an example off the coast of Massachusetts, here in the Northeast, in a place where a lot of low frequency animals use sound, predictably, during really important life functions every year. There are several stocks of endangered baleen whales that come here, and white whales, for example, there’s around 300 animals left. Every spring during their foraging time they often have their young with them. And they use their calls in order to keep a connection between mothers and calves. When the background noise gets increased by a lot of vessel presence, which we have in Stellwagen Bank, the radius, the distances over which they’re able to hear one another, are decreased. So inside the bay, you’ve made the hum a little bit louder for those animals that absolutely need to be here to feed on these copepod blooms that come in the spring, if you really think about what they are- the largest animals on earth feed on things that are some of the smallest on the planet in the ocean. So the only way that math works is that they evolved over a time period where those resources were predictably very high concentrations, and that they could basically hit a grocery store, right, that they knew where that grocery store was going to be, they could use the entire ocean basin as their place to look for grocery stores, but they needed to be able to find them. And they needed to be able to exploit them in a huge way in order to get the fat resources that they would need for the fasting periods that take place and the other parts of their life history. So all of that means that the magic of whales that migrate at those scales are the ability to find those resources. And if they start to become less predictable due to the effects of climate, the ability to exchange information with each other about where they are over very large scales, and the ability to keep track of other members of their population in general over very large scales, the ability to navigate using cues about the underwater environment. All of those are hugely based on their use of sound.

Jesse
I see. So for them sound is really the most important sense they have, is what it sounds like from what you’re saying. You know sight, I think, is the most important for us, but it’s not like that for animals in the ocean, that sounds like it …

Leila
That’s exactly right. And it’s a scale thing. So not only does the sound travel four times faster underwater than it does in air, so it’s more efficient as a means of communicating over very large scales. What’s very difficult about the doing this impact work is that we can theoretically assess the distance over which animals can project a signal under different noise conditions, but we can’t prove often that those full extents, those signals were always being used. We just know that we are encroaching on those full extents significantly, really reducing them in large steps. But it’s to do the science to really be able to prove that blue whale A is talking to Blue Whale B in a way that is providing information that is helping them make their living in the ocean. That’s tricky stuff. So we are often left with documenting the loss at scales that we know are relevant to the population, but that’s one of our trickier bits. Because there’s still a lot of magic to how whales show up where they need to show up to exploit these resources.

Jesse
So there are still many unknowns as well. Now you said that you’re an evolutionary biologist by training, how did you even get into this field? It’s a pretty specific field of study.

Leila
Very specific field of study. I think one of the easier things is easier parts of it, because I come from a landlocked, small town. I grew up in a rural place, and very active outdoors, very interested in animals, and on a farm and with a lot of animals. And that got combined with- my father is a musicologist. I loved music and hearing, always. And then it was a college town. A man moved there to work at the Cornell laboratory of Ornithology, which, that’s birds. However, he was supposed to run the bioacoustics research program. And that program became a place that I got really interested in working in in high school, and that I worked on for a long time, went away and did college, and then came back and did my PhD work as part of that bioacoustics research program, but also part of the broader university’s evolutionary biology program, because specifically I was interested in, can we use sound to track how whole populations of animals are related to one another, across the entire northern hemisphere? And if we know better how they’re related to another we’ll do a much better job managing them. At that time I was working on whales, and the International Whaling Commission is where they have to make decisions about how many of these animals are there in different groups over huge scales? And how are they related to one another? And what happens if you know we need to have a whale hunt over here? Is it really going to affect just this little population, because they’re sort of one thing to themselves, or are they interbreeding with this huge group over here? I was interested in how acoustics could give us a signature of that. That was also because I got really interested in policy and how we make decisions about the environment. I then left and worked in Washington DC in our Congress at the House of Representatives through a fellowship program. And then after that, I wanted to do this work working for government.

Jesse
It’s always so surprising what people end up doing. Would you have thought you’d be doing something like you do today maybe 30 years ago?

Leila
Yeah, you know, I mentor and talk to a lot of people now who are developing their careers and I honestly think mine is problematically linear. You know, for the oddness of what I do, I think it’s actually hard sometimes when I’m talking to people to answer that question, which is, yes, 30 years ago, I knew exactly what I would be doing. It looked like this, which is weird, right? I think a lot of people who I work with now have- because I now have a very broad portfolio actually, in terms of how I apply what I do. I work on how- where should we go with wind farms, or I work on, you know, is there something we could be doing on the vessel space? Can we work internationally better, and vessel noise control, making them quieter? So the day to day work I do right now is very general. But if you look at the path, it all does sort of go in a line, there’s not a whole lot of tangents. I think many people’s careers have lots of tangents. And they’re interesting, right?

Jesse
It is beautiful to hear examples of paths that are a bit more linear even though they are so… it’s such a special path that you took.

Leila
Thank you. You’re right. There’s a lot of luck that goes into linearity. But there’s also a lot of luck that goes into looking back and realize the path wasn’t clear, but you’re interested in where you got.

Jesse
Yeah, I’d also love to ask you if you have any visions for the future of the SanctSound project, or underwater sound research in general?

Leila
Oh, yes, I do. And it’s wonderful because when we started this project, again, it was a recommendation to go really deeply into what sanctuaries could mean for the next frontier. People should be able to go to their sanctuaries, listen to these places, download the information. The idea that we could really be a portal to people’s understanding of these places, either just from their experience or all the way to the science. That was that initial conception of access. Another way of understanding the beauty of these places and becoming more deeply invested in them.

Four years later, the program has had to marry that to all the other priorities of holding on to these places. And they had never had a standardized monitoring system. Period. Of anything. Taking on in the last year to consider what a transition will look like and to support it as much as we can. So I’m really pleased, I think we really do have a commitment to gather this information on a lot of our places and start to consider how it allows us to answer system-wide questions as well as being able to compare things apples to apples, so that you might say, if I have limited resources, where’s my threat the greatest? Or where’s the feasibility of an effect that I could have the greatest, and just trying to make those allocation decisions linked to a more comparable resource? So those are some of my dreams, keeping it going.

For me, my visions always are, how can we really affect human behavior? It’s such a funny thing to be an ecologist. But really, when you’re an ecologist, if you really are a conservation biologist, ultimately you’re an anthropologist more than anything else, because the effect we’re looking to have is on people and how they behave. For me, the next frontier will be continuing to work on the quieting front, and to embed it in emission control in general.

Jesse
So are you going to continue to work with certain partners, because I know that SanctSound- I read that they had quite a few partners listed as well in the project. Are they are very important?

Leila
They’re hugely important. To a certain degree, the list of partners we had in SanctSound, although it does include my colleagues at the US Navy, for example, the vast majority of them were partners in this: get the data out of the water all the way through the pipeline, get the data to people and analyze it along the way. So a lot of folks in the academic and data management space. Those will continue to be essential partners in the question asking and essential partners in data collection. But there’s a whole other suite of partners that are in place now but are likely to keep growing, that are in the other agencies and industry space, and other stakeholders who are non academic but who have a very clear vision for how the ocean should look in the future, as well as those who are not industrial but who are protective. So it’s those partnerships that are likely to be the ones that grow.

Jesse
So, I did prepare a little rapid fire five questions. They’re very easy, they’re not so serious.

Leila
Rapid fire means I have to keep myself short? I can do that.

Jesse
Yeah. What is your favorite marine animal?

Leila
Wales.

Jesse
What’s your favorite underwater sound?

Leila
Bearded seals.

Jesse
Bearded seals? Oh…what kind of sounds do they make?

Leila
Have you seen Star Wars? They used a lot of bearded seal sounds in Star Wars.

[sounds of bearded seals]

Jesse
Cool! What’s your least favorite underwater sound?

Leila
Probably air guns. I’m really not a fan of air guns.

Jesse
Makes sense. What’s your favorite ocean themed movie?

Leila
Finding Nemo? I have little kids. Oh, the octopus movie that just came out in the last couple of years. I am supposed to say Sonic Sea because I’m in it. I’ll say Sonic Sea too just so NRDC doesn’t get mad.

Jesse
Ok. Cool. Wow, you did a great job with the rapid fire.

Leila
I tried. I tried.

.

Jesse
So first of all, I’d like to thank Dr. Hatch for the insights she shared with us today. And after listening to her, I just felt inspired to tell a short story of my own that feels connected to this. Last summer, I was able to go to French Polynesia to do research in the fields of marine biology and ecology. And I experienced myself how many interesting things are happening in the ocean that we would never think of. There’s just so many intricacies going on, for example, the topic that I studied with Dr. Carsten Grupstra is the impact of feces of fish that live on coral reefs on coral reef health. And as many people pointed out to me when I told them about what I was doing, this is kind of a weird topic and you might think, oh, do we need to study this? Or is this important? And actually, we’re finding out that things like this, such weird and interesting things that are going on in the ocean and such weird interactions, can actually help us understand what’s going on underwater so much better. And the SanctSound project that Dr. Hatch was such a key player in, has also opened up so many new visions on the understanding of how animals communicate underwater, what kind of sounds we’re noticing underwater. It opened up a whole new world of understanding, really. And not only is this going to be able to help us better understand animals that live underwater, but it’s also going to help us understand how to better protect them. Sometimes we even learn things about humanity. So I just think that it’s really amazing how a project like this can lead to so many new insights on so many new areas. And I want to thank Dr. Hatch for doing the work that she does.

We hope you enjoyed today’s segment. Please feel free to share your thoughts over social media and visit Longitude.site for the episode transcript. Join us next time for more unique insights on Longitude Sound Bytes.